[1] X. Y. Jiang, et al, Interplay between superconductivity and the strange-metal state in FeSe, Nat. Phys. 19(3), 365(2023).
[2] X. F. Li, et al, Rhombohedral-stacked bilayer transition metal dichalcogenides for high-performance atomically thin CMOS devices, Sci. Adv. 9(7), 9(2023).
[3] X. K. Li, et al, Field-linear anomalous Hall effect and Berry curvature induced by spin chirality in the kagome antiferromagnet Mn3Sn, Nat. Commun. 14(1), 7(2023).
[4] X. K. Li, et al, The phonon thermal Hall angle in black phosphorus, Nat. Commun. 14(1), 6(2023).
[5] Y. T. Chang, et al, Colossal linear magnetoelectricity in polar magnet Fe2Mo3O8, Phys. Rev. Lett. 131, 136701 (2023).
[6] X. D. Guo, et al, Onsager Reciprocal Relation between Anomalous Transverse Coefficients of an Anisotropic Antiferromagnet, Phys. Rev. Lett. 131, 246302 (2023).
[7] W. J. Sun, et al, Evidence for Anisotropic Superconductivity Beyond Pauli Limit in Infinite-Layer Lanthanum Nickelates, Adv. Mater. 35(32), 7(2023).
[8] L. Wu, et al, Field-induced Lifshitz transition in the magnetic Weyl semimetal candidate PrAlSi, npj Quantum Mater. 8(1), 7(2023).
[9] Q. Zhu,et al, Rydberg State Single-Mode Polariton Lasing with Ultralow Threshold via Symmetry Engineering, Nano Lett. 23, 7797 (2023).
[10] X. D. Chen, et al, Manipulation and Optical Detection of Artificial Topological Phenomena in 2D Van der Waals Fe5GeTe2/MnPS3 Heterostructures, Adv. Sci. 10(22), 9(2023).
[11] P. Liu, et al, Ultralow-field magnetocaloric materials for compact magnetic refrigeration, NPG Asia Mater. 15(1), 9(2023).
[12] Y. T. Chang, et al, Antiferromagnetic to Ferrimagnetic Phase Transition and Possible Phase Coexistence in Polar Magnets (Fe1-xMnx)2Mo3O8 (0<x<1), ACS Appl. Mater. Interfaces. 15(18), 22204-22211(2023).
[13] X. Li, et al, Shubnikov–de Haas oscillations and planar Hall effect in HfTe2, Phys. Rev. B. 108, 235155 (2023).
[14] P. Pan, et al, Ultrasonic investigation of the Kondo semimetal CeBi, Phys. Rev. B. 108, 165153 (2023).
[15] Y. T. Chang, et al, Linear magnetoelectric memory and training effect in the honeycomb antiferromagnet Co4Nb2O9, Phys. Rev. B. 107(1), 7(2023).
[16] K. Q. Cheng, et al, Synthesis and physical properties of Ce2Rh3+δSb4 single crystals, K. Q. Phys. Rev. Mater. 7(8), 7(2023).
[17] M. He, et al, Magnetic and electrical properties of a heavy-fermion compound EuRh2Al8, Phys. Rev. Mater. 7(3), 7(2023).
[18] X. B. He, et al, Pressure-tuning domain-wall chirality in noncentrosymmetric magnetic Weyl semimetal CeAlGe, Sci. China-Phys. Mech. Astron. 66(3), 9(2023).
[19] Y. Z. Li, et al, Synergy of Magnetic Anisotropy and Ferromagnetic Interaction Triggering a Dimeric Cr(II) Zero-Field Single-Molecule Magnet, Inorg. Chem. 62(16), 6297-6305(2023).
[20] Z. R. Li, et al, K2Ni(SeO3)2: A Perfect S=1 Triangular-Lattice Antiferromagnet with Strong Geometric Frustration and Easy-Plane Anisotropy, Cryst. Growth Des. 23(7), 5137-5143(2023).
[21] A. D. Liu, et al, Ba9RE2(SiO4)6 (RE = Ho-Yb): A Family of Rare-Earth-Based Honeycomb-Lattice Magnets, Inorg. Chem. 10(2023).
[22] C. Y. Liu, et al, 11.4 T ultra-high static magnetic field has no effect on morphology but induces upregulation of TNF signaling pathway based on transcriptome analysis in zebrafish embryos, Ecotox. Environ. Safe. 255, 10(2023).
[23] F. J. Lu, et al, 75As NMR study of the antiferromagnetic Kondo lattice compound CeNiAsO, Phys. Rev. B. 107(4), 7(2023).
[24] A. Y. Luo, et al, Topological superconductor candidates PdBi2Te4 and PdBi2Te5 from a generic ab initio strategy, npj Comput. Mater. 9(1), 7(2023).
[25] C. Shang, et al, Percolative transport and metamagnetic transition in phase separated La0.55Ca0.45Mn1-xAlxO3-δ, J. Alloy. Compd. 954, 9(2023).
[26] M. F. Shu, et al, Static and dynamical properties of the spin-52 nearly ideal triangular lattice antiferromagnet Ba3MnSb2O9, Phys. Rev. B. 108(17), 12(2023).
[27] W. Wei, et al, Large upper critical fields and dimensionality crossover of superconductivity in the infinite-layer nickelate La0.8Sr0.2NiO2, Phys. Rev. B. 107(22), 7(2023).
[28] X. F. Xu, et al, Electrical transport under extreme conditions in the spin-ladder antiferromagnet TaFe1.25Te3, Phys. Rev. B. 107(11), 6(2023).
[29] T. Li, et al, Doping-controlled quantum magnetization plateau and high-field ferroelectricity in multiferroic Ni2-xTxV2O7 (T = Zn or Mn), Phys. Rev. B. 108, 224414 (2023).
[30] R. Chen, et al, Ferroelectricity and multiferroic quantum critical behaviors in Co2V2O7, Phys. Rev. B. 108, 224405 (2023).
[31] F. Yang, et al, Quasilinear magnetoresistance and de Haas-van Alphen quantum oscillations in a LuPb2 single crystal, Phys. Rev. B. 108(3), 10(2023).
[32] F. Y. Song, et al, Magnetic field tuned anisotropic quantum phase transition in the distorted kagome antiferromagnet Nd3BWO9, Phys. Rev. B. 108, 214410 (2023).
[33] S. Jia, et al, Metamagnetic transition and anomalous Hall effect in Mn-based kagomé magnets RMn6Ge6 (R=Tb-Lu), Phy. Rev. Mater. 7, 024404 (2023).
[34] Y. T. Chang, et al, Tuning magnetic properties of polar magnets (Mn1-xCox)2Mo3O8 (0<x<1) with interacted magnetic sublattices, Appl. Phys. Lett. 123(10), 6(2023).
[35] Y. Zhou, et al, Field-induced Co(II) single-ion magnet in octahedral [S6] coordination environment, J. Mol. Struct. 1294, 136391 (2023)
[36] K. Yang, et al, Scalable microfluidic fabrication of vertically aligned two-dimensional nanosheets for superior thermal management, Mater. Horizons. 10(9), 3536-3547(2023).
[37] Z. Zeng, et al, Transient Magnetoelectric Coupling Induced by the Dynamic Intertwinement between Exchange Striction and Compensation in GdFeO3, J. Phys. Chem. Lett. 7(2023).
[38] T. Zhang, et al, Three factors make bulk high-entropy alloys as effective electrocatalysts for oxygen evolution, Mater. Futures. 2(4), 11(2023).
[39] G. L. Xiao, et al, Magnetic Properties and Phase Diagram of the Honeycomb Layered Na2Ni2TeO6 Single Crystal under a High Magnetic Field, J. Phys. Chem. C. 127(13), 6562-6568(2023).
[40] Y. Q. Pan, et al, Novel anisotropy of upper critical fields in Fe1+yTe0.6Se0.4, J. Alloys Compd. 976, 173262 (2024).